Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Separate-effect tests on zirconium cladding degradation in air ingress situations

Identifieur interne : 000092 ( PascalFrancis/Corpus ); précédent : 000091; suivant : 000093

Separate-effect tests on zirconium cladding degradation in air ingress situations

Auteurs : C. Duriez ; M. Steinbrück ; D. Ohai ; T. Meleg ; J. Birchley ; T. Haste

Source :

RBID : Pascal:09-0098245

Descripteurs français

English descriptors

Abstract

In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air+steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK,IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the "as-received" state, or after pre-oxidation in steam. "Analytical" tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 °C up to 1500 °C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale degradation under air exposure, important features that have to be taken into account are highlighted.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0029-5493
A02 01      @0 NEDEAU
A03   1    @0 Nucl. eng. des.
A05       @2 239
A06       @2 2
A08 01  1  ENG  @1 Separate-effect tests on zirconium cladding degradation in air ingress situations
A11 01  1    @1 DURIEZ (C.)
A11 02  1    @1 STEINBRÜCK (M.)
A11 03  1    @1 OHAI (D.)
A11 04  1    @1 MELEG (T.)
A11 05  1    @1 BIRCHLEY (J.)
A11 06  1    @1 HASTE (T.)
A14 01      @1 Institut de Radioprotection et de Sûreté Nucléaire. IgSN. Direction de Prévention des Accidents Majeurs, Centre de Cadarache @2 13115 St Paul LezDurance @3 FRA @Z 1 aut.
A14 02      @1 Forschungszentrum Karlsruhe, FZK, Institut für Materialforschung, Postfach 3640 @2 76021 Karlsruhe @3 DEU @Z 2 aut.
A14 03      @1 Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department @2 Pitesti, 115400 Mioveni Arges @3 ROU @Z 3 aut. @Z 4 aut.
A14 04      @1 Paul Scherrer Institute @2 5232 Villigen @3 CHE @Z 5 aut. @Z 6 aut.
A20       @1 244-253
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 12262 @5 354000184170980070
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 09-0098245
A60       @1 P
A61       @0 A
A64 01  1    @0 Nuclear engineering and design
A66 01      @0 NLD
C01 01    ENG  @0 In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air+steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK,IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the "as-received" state, or after pre-oxidation in steam. "Analytical" tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 °C up to 1500 °C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale degradation under air exposure, important features that have to be taken into account are highlighted.
C02 01  X    @0 001D06D04D
C02 02  X    @0 001D06B04C
C02 03  X    @0 001D06D04E
C02 04  X    @0 230
C03 01  X  FRE  @0 Zirconium alliage @5 01
C03 01  X  ENG  @0 Zirconium alloy @5 01
C03 01  X  SPA  @0 Zirconio aleación @5 01
C03 02  X  FRE  @0 Gaine (combustible) @5 02
C03 02  X  ENG  @0 Clad @5 02
C03 02  X  SPA  @0 Vaina (combustible) @5 02
C03 03  X  FRE  @0 Réacteur nucléaire @5 03
C03 03  X  ENG  @0 Nuclear reactor @5 03
C03 03  X  SPA  @0 Reactor nuclear @5 03
C03 04  X  FRE  @0 Combustible irradié @5 04
C03 04  X  ENG  @0 Irradiated nuclear fuel @5 04
C03 04  X  SPA  @0 Combustible irradiado @5 04
C03 05  X  FRE  @0 Probabilité @5 05
C03 05  X  ENG  @0 Probability @5 05
C03 05  X  SPA  @0 Probabilidad @5 05
C03 06  X  FRE  @0 Accident @5 06
C03 06  X  ENG  @0 Accident @5 06
C03 06  X  SPA  @0 Accidente @5 06
C03 07  X  FRE  @0 Barre combustible @5 07
C03 07  X  ENG  @0 Fuel rod @5 07
C03 07  X  SPA  @0 Varilla combustible @5 07
C03 08  X  FRE  @0 Haute température @5 08
C03 08  X  ENG  @0 High temperature @5 08
C03 08  X  SPA  @0 Alta temperatura @5 08
C03 09  X  FRE  @0 Vapeur eau @5 09
C03 09  X  ENG  @0 Water vapor @5 09
C03 09  X  SPA  @0 Vapor agua @5 09
C03 10  X  FRE  @0 Oxydation @5 10
C03 10  X  ENG  @0 Oxidation @5 10
C03 10  X  SPA  @0 Oxidación @5 10
C03 11  X  FRE  @0 Nitrure @2 NA @5 11
C03 11  X  ENG  @0 Nitrides @2 NA @5 11
C03 11  X  SPA  @0 Nitruro @2 NA @5 11
C03 12  X  FRE  @0 Azote @2 NC @5 12
C03 12  X  ENG  @0 Nitrogen @2 NC @5 12
C03 12  X  SPA  @0 Nitrógeno @2 NC @5 12
C03 13  X  FRE  @0 Zircaloy @5 13
C03 13  X  ENG  @0 Zircaloy @5 13
C03 13  X  SPA  @0 Zirconio aleación @5 13
C03 14  X  FRE  @0 Réacteur eau pressurisée @5 14
C03 14  X  ENG  @0 Pressurized water reactor @5 14
C03 14  X  SPA  @0 Reactor agua a presión @5 14
C03 15  X  FRE  @0 Réacteur modéré eau @5 15
C03 15  X  ENG  @0 Water moderated reactor @5 15
C03 15  X  SPA  @0 Reactor moderado agua @5 15
C03 16  X  FRE  @0 Réacteur eau lourde @5 16
C03 16  X  ENG  @0 Heavy water reactor @5 16
C03 16  X  SPA  @0 Reactor agua pesada @5 16
C03 17  X  FRE  @0 Tube @5 17
C03 17  X  ENG  @0 Tube @5 17
C03 17  X  SPA  @0 Tubo @5 17
C03 18  X  FRE  @0 Thermogravimétrie @5 18
C03 18  X  ENG  @0 Thermogravimetry @5 18
C03 18  X  SPA  @0 Termogravimetría @5 18
C03 19  X  FRE  @0 Spectrométrie masse @5 19
C03 19  X  ENG  @0 Mass spectrometry @5 19
C03 19  X  SPA  @0 Espectrometría masa @5 19
C03 20  X  FRE  @0 Inspection @5 20
C03 20  X  ENG  @0 Inspection @5 20
C03 20  X  SPA  @0 Inspección @5 20
C03 21  X  FRE  @0 Oxyde @2 NA @5 21
C03 21  X  ENG  @0 Oxides @2 NA @5 21
C03 21  X  SPA  @0 Óxido @2 NA @5 21
C03 22  X  FRE  @0 Modélisation @5 22
C03 22  X  ENG  @0 Modeling @5 22
C03 22  X  SPA  @0 Modelización @5 22
C03 23  X  FRE  @0 Dispositif CANDU @4 INC @5 72
N21       @1 068
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0098245 INIST
ET : Separate-effect tests on zirconium cladding degradation in air ingress situations
AU : DURIEZ (C.); STEINBRÜCK (M.); OHAI (D.); MELEG (T.); BIRCHLEY (J.); HASTE (T.)
AF : Institut de Radioprotection et de Sûreté Nucléaire. IgSN. Direction de Prévention des Accidents Majeurs, Centre de Cadarache/13115 St Paul LezDurance/France (1 aut.); Forschungszentrum Karlsruhe, FZK, Institut für Materialforschung, Postfach 3640/76021 Karlsruhe/Allemagne (2 aut.); Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department/Pitesti, 115400 Mioveni Arges/Roumanie (3 aut., 4 aut.); Paul Scherrer Institute/5232 Villigen/Suisse (5 aut., 6 aut.)
DT : Publication en série; Niveau analytique
SO : Nuclear engineering and design; ISSN 0029-5493; Coden NEDEAU; Pays-Bas; Da. 2009; Vol. 239; No. 2; Pp. 244-253; Bibl. 1/2 p.
LA : Anglais
EA : In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air+steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK,IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the "as-received" state, or after pre-oxidation in steam. "Analytical" tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 °C up to 1500 °C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale degradation under air exposure, important features that have to be taken into account are highlighted.
CC : 001D06D04D; 001D06B04C; 001D06D04E; 230
FD : Zirconium alliage; Gaine (combustible); Réacteur nucléaire; Combustible irradié; Probabilité; Accident; Barre combustible; Haute température; Vapeur eau; Oxydation; Nitrure; Azote; Zircaloy; Réacteur eau pressurisée; Réacteur modéré eau; Réacteur eau lourde; Tube; Thermogravimétrie; Spectrométrie masse; Inspection; Oxyde; Modélisation; Dispositif CANDU
ED : Zirconium alloy; Clad; Nuclear reactor; Irradiated nuclear fuel; Probability; Accident; Fuel rod; High temperature; Water vapor; Oxidation; Nitrides; Nitrogen; Zircaloy; Pressurized water reactor; Water moderated reactor; Heavy water reactor; Tube; Thermogravimetry; Mass spectrometry; Inspection; Oxides; Modeling
SD : Zirconio aleación; Vaina (combustible); Reactor nuclear; Combustible irradiado; Probabilidad; Accidente; Varilla combustible; Alta temperatura; Vapor agua; Oxidación; Nitruro; Nitrógeno; Zirconio aleación; Reactor agua a presión; Reactor moderado agua; Reactor agua pesada; Tubo; Termogravimetría; Espectrometría masa; Inspección; Óxido; Modelización
LO : INIST-12262.354000184170980070
ID : 09-0098245

Links to Exploration step

Pascal:09-0098245

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Separate-effect tests on zirconium cladding degradation in air ingress situations</title>
<author>
<name sortKey="Duriez, C" sort="Duriez, C" uniqKey="Duriez C" first="C." last="Duriez">C. Duriez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut de Radioprotection et de Sûreté Nucléaire. IgSN. Direction de Prévention des Accidents Majeurs, Centre de Cadarache</s1>
<s2>13115 St Paul LezDurance</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steinbruck, M" sort="Steinbruck, M" uniqKey="Steinbruck M" first="M." last="Steinbrück">M. Steinbrück</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Forschungszentrum Karlsruhe, FZK, Institut für Materialforschung, Postfach 3640</s1>
<s2>76021 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ohai, D" sort="Ohai, D" uniqKey="Ohai D" first="D." last="Ohai">D. Ohai</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department</s1>
<s2>Pitesti, 115400 Mioveni Arges</s2>
<s3>ROU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Meleg, T" sort="Meleg, T" uniqKey="Meleg T" first="T." last="Meleg">T. Meleg</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department</s1>
<s2>Pitesti, 115400 Mioveni Arges</s2>
<s3>ROU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Birchley, J" sort="Birchley, J" uniqKey="Birchley J" first="J." last="Birchley">J. Birchley</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Paul Scherrer Institute</s1>
<s2>5232 Villigen</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Haste, T" sort="Haste, T" uniqKey="Haste T" first="T." last="Haste">T. Haste</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Paul Scherrer Institute</s1>
<s2>5232 Villigen</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0098245</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0098245 INIST</idno>
<idno type="RBID">Pascal:09-0098245</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000092</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Separate-effect tests on zirconium cladding degradation in air ingress situations</title>
<author>
<name sortKey="Duriez, C" sort="Duriez, C" uniqKey="Duriez C" first="C." last="Duriez">C. Duriez</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut de Radioprotection et de Sûreté Nucléaire. IgSN. Direction de Prévention des Accidents Majeurs, Centre de Cadarache</s1>
<s2>13115 St Paul LezDurance</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steinbruck, M" sort="Steinbruck, M" uniqKey="Steinbruck M" first="M." last="Steinbrück">M. Steinbrück</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Forschungszentrum Karlsruhe, FZK, Institut für Materialforschung, Postfach 3640</s1>
<s2>76021 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ohai, D" sort="Ohai, D" uniqKey="Ohai D" first="D." last="Ohai">D. Ohai</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department</s1>
<s2>Pitesti, 115400 Mioveni Arges</s2>
<s3>ROU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Meleg, T" sort="Meleg, T" uniqKey="Meleg T" first="T." last="Meleg">T. Meleg</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department</s1>
<s2>Pitesti, 115400 Mioveni Arges</s2>
<s3>ROU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Birchley, J" sort="Birchley, J" uniqKey="Birchley J" first="J." last="Birchley">J. Birchley</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Paul Scherrer Institute</s1>
<s2>5232 Villigen</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Haste, T" sort="Haste, T" uniqKey="Haste T" first="T." last="Haste">T. Haste</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Paul Scherrer Institute</s1>
<s2>5232 Villigen</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Nuclear engineering and design</title>
<title level="j" type="abbreviated">Nucl. eng. des.</title>
<idno type="ISSN">0029-5493</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Nuclear engineering and design</title>
<title level="j" type="abbreviated">Nucl. eng. des.</title>
<idno type="ISSN">0029-5493</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accident</term>
<term>Clad</term>
<term>Fuel rod</term>
<term>Heavy water reactor</term>
<term>High temperature</term>
<term>Inspection</term>
<term>Irradiated nuclear fuel</term>
<term>Mass spectrometry</term>
<term>Modeling</term>
<term>Nitrides</term>
<term>Nitrogen</term>
<term>Nuclear reactor</term>
<term>Oxidation</term>
<term>Oxides</term>
<term>Pressurized water reactor</term>
<term>Probability</term>
<term>Thermogravimetry</term>
<term>Tube</term>
<term>Water moderated reactor</term>
<term>Water vapor</term>
<term>Zircaloy</term>
<term>Zirconium alloy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Zirconium alliage</term>
<term>Gaine (combustible)</term>
<term>Réacteur nucléaire</term>
<term>Combustible irradié</term>
<term>Probabilité</term>
<term>Accident</term>
<term>Barre combustible</term>
<term>Haute température</term>
<term>Vapeur eau</term>
<term>Oxydation</term>
<term>Nitrure</term>
<term>Azote</term>
<term>Zircaloy</term>
<term>Réacteur eau pressurisée</term>
<term>Réacteur modéré eau</term>
<term>Réacteur eau lourde</term>
<term>Tube</term>
<term>Thermogravimétrie</term>
<term>Spectrométrie masse</term>
<term>Inspection</term>
<term>Oxyde</term>
<term>Modélisation</term>
<term>Dispositif CANDU</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air+steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK,IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the "as-received" state, or after pre-oxidation in steam. "Analytical" tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 °C up to 1500 °C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale degradation under air exposure, important features that have to be taken into account are highlighted.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0029-5493</s0>
</fA01>
<fA02 i1="01">
<s0>NEDEAU</s0>
</fA02>
<fA03 i2="1">
<s0>Nucl. eng. des.</s0>
</fA03>
<fA05>
<s2>239</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Separate-effect tests on zirconium cladding degradation in air ingress situations</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DURIEZ (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STEINBRÜCK (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>OHAI (D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MELEG (T.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BIRCHLEY (J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>HASTE (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut de Radioprotection et de Sûreté Nucléaire. IgSN. Direction de Prévention des Accidents Majeurs, Centre de Cadarache</s1>
<s2>13115 St Paul LezDurance</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Forschungszentrum Karlsruhe, FZK, Institut für Materialforschung, Postfach 3640</s1>
<s2>76021 Karlsruhe</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department</s1>
<s2>Pitesti, 115400 Mioveni Arges</s2>
<s3>ROU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Paul Scherrer Institute</s1>
<s2>5232 Villigen</s2>
<s3>CHE</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>244-253</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12262</s2>
<s5>354000184170980070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0098245</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nuclear engineering and design</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air+steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK,IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the "as-received" state, or after pre-oxidation in steam. "Analytical" tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 °C up to 1500 °C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale degradation under air exposure, important features that have to be taken into account are highlighted.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06D04D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06B04C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06D04E</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Zirconium alliage</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Zirconium alloy</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Zirconio aleación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Gaine (combustible)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Clad</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Vaina (combustible)</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Réacteur nucléaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nuclear reactor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Reactor nuclear</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Combustible irradié</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Irradiated nuclear fuel</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Combustible irradiado</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Probabilité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Probability</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Probabilidad</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Accident</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Accident</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Accidente</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Barre combustible</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Fuel rod</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Varilla combustible</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Vapeur eau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Water vapor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Vapor agua</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nitrure</s0>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Nitrides</s0>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Nitruro</s0>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Azote</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Nitrogen</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Nitrógeno</s0>
<s2>NC</s2>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Zircaloy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Zircaloy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Zirconio aleación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Réacteur eau pressurisée</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Pressurized water reactor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Reactor agua a presión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Réacteur modéré eau</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Water moderated reactor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Reactor moderado agua</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Réacteur eau lourde</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Heavy water reactor</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Reactor agua pesada</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Tube</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Tube</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Tubo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Thermogravimétrie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Thermogravimetry</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Termogravimetría</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Spectrométrie masse</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Mass spectrometry</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Espectrometría masa</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Inspection</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Inspection</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Inspección</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Oxyde</s0>
<s2>NA</s2>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Oxides</s0>
<s2>NA</s2>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Óxido</s0>
<s2>NA</s2>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Dispositif CANDU</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>068</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0098245 INIST</NO>
<ET>Separate-effect tests on zirconium cladding degradation in air ingress situations</ET>
<AU>DURIEZ (C.); STEINBRÜCK (M.); OHAI (D.); MELEG (T.); BIRCHLEY (J.); HASTE (T.)</AU>
<AF>Institut de Radioprotection et de Sûreté Nucléaire. IgSN. Direction de Prévention des Accidents Majeurs, Centre de Cadarache/13115 St Paul LezDurance/France (1 aut.); Forschungszentrum Karlsruhe, FZK, Institut für Materialforschung, Postfach 3640/76021 Karlsruhe/Allemagne (2 aut.); Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department/Pitesti, 115400 Mioveni Arges/Roumanie (3 aut., 4 aut.); Paul Scherrer Institute/5232 Villigen/Suisse (5 aut., 6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Nuclear engineering and design; ISSN 0029-5493; Coden NEDEAU; Pays-Bas; Da. 2009; Vol. 239; No. 2; Pp. 244-253; Bibl. 1/2 p.</SO>
<LA>Anglais</LA>
<EA>In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air+steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK,IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the "as-received" state, or after pre-oxidation in steam. "Analytical" tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 °C up to 1500 °C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale degradation under air exposure, important features that have to be taken into account are highlighted.</EA>
<CC>001D06D04D; 001D06B04C; 001D06D04E; 230</CC>
<FD>Zirconium alliage; Gaine (combustible); Réacteur nucléaire; Combustible irradié; Probabilité; Accident; Barre combustible; Haute température; Vapeur eau; Oxydation; Nitrure; Azote; Zircaloy; Réacteur eau pressurisée; Réacteur modéré eau; Réacteur eau lourde; Tube; Thermogravimétrie; Spectrométrie masse; Inspection; Oxyde; Modélisation; Dispositif CANDU</FD>
<ED>Zirconium alloy; Clad; Nuclear reactor; Irradiated nuclear fuel; Probability; Accident; Fuel rod; High temperature; Water vapor; Oxidation; Nitrides; Nitrogen; Zircaloy; Pressurized water reactor; Water moderated reactor; Heavy water reactor; Tube; Thermogravimetry; Mass spectrometry; Inspection; Oxides; Modeling</ED>
<SD>Zirconio aleación; Vaina (combustible); Reactor nuclear; Combustible irradiado; Probabilidad; Accidente; Varilla combustible; Alta temperatura; Vapor agua; Oxidación; Nitruro; Nitrógeno; Zirconio aleación; Reactor agua a presión; Reactor moderado agua; Reactor agua pesada; Tubo; Termogravimetría; Espectrometría masa; Inspección; Óxido; Modelización</SD>
<LO>INIST-12262.354000184170980070</LO>
<ID>09-0098245</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000092 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000092 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0098245
   |texte=   Separate-effect tests on zirconium cladding degradation in air ingress situations
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023